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Anhydrous InCl3 has been shown to efficiently catalyze the Ferrier rearrangement by a direct allylic
substitution of the hydroxyl group at C-3 position of glycals to afford the corresponding 2,3-unsaturated
glycosides in high yields at ambient temperature. This methodology obviates the need for protecting and/
or activating the C-3 hydroxyl group of glycals. The reaction works in equal ease with both 4,6-di-O-ben-
zyl-D-glucal and 4,6-di-O-benzyl-D-galactal. The mildness of InCl3 makes this approach compatible for
glycosyl acceptors with acid labile groups. The generality of the reaction has been demonstrated with
a diversity of alcohols, phenols, and sugar nucleophiles.

� 2009 Elsevier Ltd. All rights reserved.
Ferrier rearrangement is one among the few name reactions
which continues to offer widespread applications in organic syn-
thesis for over four decades.1 In his pioneering work, Ferrier
reported that tri-O-acetyl-D-glucal 1 on exposure to BF3�OEt2 in
the presence of an alcohol afforded 2,3-unsaturated glycosides 2
as an anomeric mixture (Scheme 1).2 Since then, the rearrange-
ment has become synthetically the most useful transformation in
glycal chemistry, as the resulting 2,3-unsaturated glycosides have
served as versatile chiral intermediates in the synthesis of antibiot-
ics,3 natural products,4 glycopeptides,5 nucleosides,6 oligosaccha-
rides,1f,7 uronic acids,8 and modified carbohydrates.9 A wide
range of catalysts have been employed in the Ferrier rearrange-
ment.10 The synthetic importance of this glycosylation reaction is
clearly evident from the vast number of publications on this to-
pic.10 Literature reports that tri-O-acetyl-D-glucal has been the
most common choice of the glycosyl donor due to its ready avail-
ability, although the rearrangement has been studied on other gly-
cals too.11 However, successful Ferrier rearrangement has been
carried out only with glycals possessing a good leaving group at
the C-3 position such as tricholoracetamidate,12 tert-butyloxycar-
bonyl ester,13 n-pentenoyl ester,14 benzoyl ester,15 carbonate,16

propargyl ether,17 and benzyl ether.10b,11a,18 Thus, an additional
step of appropriately protecting the C-3 hydroxyl group of glycals
is an essential pre-requisite in many examples reported so far. In
addition, expensive catalysts such as Pd(PhCN)2Cl2/DTTBP,12a
ll rights reserved.
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IDCP,14 Et2Zn–Pd(OAc)2/DTTBP,13 and AuCl3
17 are often required

to further activate the leaving group at the C-3 position to realize
the allylic rearrangement. Except for a few scattered reports,14,16

examples of a direct Ferrier rearrangement on glycals possessing
a free hydroxyl group at the C-3 position are uncommon. Even in
such cases, low yield of the resulting glycosides14 or use of a very
strong acid (such as trifluoroacetic acid) in large excess limits their
synthetic applications, especially toward acid labile glycosyl accep-
tors/donors in the latter case.16 A couple of examples on Ferrier-
type rearrangement under Mitsunobu conditions though available,
are limited to the use of carboxylic acids19 and phenols20 as glyco-
syl acceptors, and are not suitable for alcohols. Development of an
efficient method for direct substitution of alcohols is still a chal-
lenging goal in organic chemistry given the poor leaving ability
of the hydroxyl group. As a part of our research program aimed
at the use of InCl3 as a mild catalyst in carbohydrate chemistry,
we recently reported a stereoselective synthesis of unsaturated
glycosides via InCl3-catalyzed 1,3-alkoxy migration in glycal
ethers.21 A recent report of Baba et al.22 on direct allylic substitu-
tion of alcohols with carbon nucleophiles using InCl3 at high
temperatures prompted us to explore the catalytic behavior of
InCl3 toward glycals possessing a free hydroxyl group at C-3
position. In this Letter, we report a successful outcome of Ferrier
rearrangement of di-O-benzyl-D-glucal as well as di-O-benzyl-D-
galactal with a variety of alcohols as well as phenols in presence
of just 5 mol % of InCl3 as a catalyst. The reaction proceeds at ambi-
ent temperature (30 �C) affording products in high yields (68–92%),
is stereoselective yielding predominantly a-anomers, and is
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Scheme 1. Lewis acid-catalyzed Ferrier rearrangement of tri-O-acetyl-D-glucal.
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compatible with acid-labile glycosyl acceptors. The interest of this
methodology relies on the extremely mild conditions required
even with a free hydroxyl group at the C-3 position.

Initially, Ferrier rearrangement was investigated on 4,6-di-O-
benzyl-D-glucal 323 with methanol in presence of 5 mol % of InCl3

at ambient temperature (30 �C). The progress of the reaction was
monitored by TLC which indicated a gradual disappearance of
the starting material and the appearance of a non-polar product.
Complete consumption of the starting material was noticed after
14 h. Upon purification and careful analysis, the product was in-
deed identified as methyl 4,6-di-O-benzyl-2,3-dideoxy-hex-2-eno-
pyranoside 4, obtained as an anomeric mixture (a:b = 4:1) in an
overall isolated yield of 87%.

A higher catalyst load while reducing the reaction time, did not
bring about any significant change in the yield or anomeric selec-
tivity. Encouraged by the initial results, the reaction was then car-
ried out with benzyl and allyl alcohols, which also underwent
InCl3-catalyzed Ferrier rearrangement smoothly to afford the cor-
responding 2,3-unsaturated glycosides 5 and 6, respectively, in
high yields (Table 1, entries 2 and 3). Synthetically more rewarding
is the success of the reaction with sugar nucleophiles possessing
acid-labile acetal functionalities (Table 1, entries 4 and 5). The
disaccharides 7 and 8 were obtained in good yields with the acetal
groups remaining intact. Notably, in all these examples the ano-
meric ratio (a:b = 4:1) remained almost the same with the a-ano-
mer being the major isomer.

Having successfully accomplished the direct InCl3-catalyzed
Ferrier rearrangement of 4,6-di-O-benzyl-D-glucal with a few alco-
hols, we next focused our attention with a greater emphasis on a
similar reaction with 4,6-di-O-benzyl-D-galactal.

It is well documented in the literature that Ferrier rearrange-
ment of protected galactals is rather difficult and not as straight
forward as for protected glucals due to the competing formation
of 2-deoxy glycosides.16,24 Only a very few successful methods
are available for the Ferrier rearrangement of galactals even with
a good leaving group at the C-3 position such as acetyl, n-pentenoyl
ester, and trichloroacetamidate.12,14 Given this background, we
considered that a successful Ferrier rearrangement on galactal
especially with a free hydroxyl group at the C-3 position would
Table 1
InCl3-catalyzed Ferrier rearrangement of 4,6-di-O-benzyl-D-glucal

O
HO

OBn

BnO

3

R-OH (1.2 eq
InCl3 (5 mo

CH2Cl2
30 0C

Entry R Prod

1 Methyl 4c

2 Benzyl 5c

3 Allyl 6c

4 1,2:3,4-Di-O-isopropylidene-D-galactopyranosyl 7c

5 1,2:5,6-Di-O-isopropylidene-D-glucofuranosyl 8c

a Isolated yield after column chromatography.
b Anomeric ratios were obtained from 1H NMR spectra of the crude products; values

chromatography.
c Spectral data are consistent with literature values (Refs. 10b,13,18a,21).
prove to be of exceptional synthetic value. Thus, when we treated
4,6,-di-O-benzyl-D-galactal25 with methanol in presence of 5 mol %
of InCl3 at 30 �C, we were surprised to notice that the expected 2,3-
unsaturated glycoside 10 was formed in a very high yield of 91%.
Better anomeric diastereoselectivity (a:b = 95:5) observed in this
case as compared to glycoside 4 obtained from 4,6-di-O-benzyl-
D-glucal deserves mention. Inspired with the initial success, the
reaction was tested with a variety of alcohols (Table 2, entries 2–
6). Gratifyingly, in all the cases, Ferrier rearrangement occurred
smoothly affording the corresponding 2,3-unsaturated glycosides
in very high yields and high a-selectivity. Noteworthy is that most
of these reactions are much faster than their glucal counterparts
(Tables 1 and 2, entries 2–5). As in the previous case, sugar nucle-
ophiles such as 1,2:3,4-di-O-isopropylidene-D-galactopyranose and
1,2:5,6-di-O-isopropylidene-D-glucofuranose also reacted with
ease to afford the disaccharides in high yields (Table 2, entries 4
and 5). Further, formation of 2-deoxy galactosides in these exam-
ples was hardly observed even in the 1H NMR spectra of the crude
reaction mixtures. This circumvents the existing difficulty in the
synthesis of 2,3-unsaturated galactosides and makes this method-
ology more attractive and reliable. The success of this reaction with
phenols (Table 2, entries 7–9) further demonstrates its generality
and applicability to aryl nucleophiles. Notably, an earlier report
on a Mitsunobu approach for the synthesis of 17 resulted in an
inseparable mixture of compounds.20 Further, while Mitsunobu
reaction of 4,6-di-O-benzyl-D-galactal 9 with carboxylic acids19b

or phenols20 as nucleophiles predominantly or exclusively afforded
products arising out of a direct SN2 reaction, exclusive Ferrier rear-
rangement of 9 reported here is complimentary. Given the litera-
ture background that 2,3-unsaturated aryl glycosides serve as
useful precursors for palladium-catalyzed stereoselective C-glyco-
sylation reactions,26 compounds 16–18 reported here would prove
to be of a synthetic value.

In conclusion, we have demonstrated that InCl3, though consid-
ered as a mild Lewis acid, is an excellent catalyst for the Ferrier rear-
rangement of unactivated glycals. The reaction condition is mild
and the reaction requires only 5 mol % of InCl3.27 The reaction is
compatible with acid-labile functional groups, is stereoselective,
and is general toward a wide range of oxygenated nucleophiles.
Our results significantly highlight that protection and/or prior acti-
vation of C-3 hydroxyl group of glycals is not an essential criterion
to realize a successful Ferrier rearrangement. Surpassing result is
the facile synthesis of a wide array of 2,3-unsaturated galactosides,
which are otherwise difficult to obtain. We believe that the meth-
odology reported here is synthetically quite attractive and would
spur on further interests toward the synthesis of complex
glycosides.
O
OBn

BnO

OR

uiv.)
l%)

4-8

uct Time (h) Yielda (%) Ratio (a/b)b

14 87 81:19 (90:10)
10 84 83:17 (96:4)
13 92 83:17 (85:15)
9 75 83:17 (100:0)
8 68 80:20 (90:10)

in parantheses refer to the anomeric ratios of the products obtained after column



Table 2
InCl3-catalyzed Ferrier rearrangement of 4,6-di-O-benzyl-D-galactal

O
HO

OBnBnO

9

O
OBnBnO

OR
10-18

R-OH (1.2 equiv.)
InCl3 (5 mol%)

 CH2Cl2
30 0C

Entry R Product Time (h) Yielda (%) Ratio (a:b)b

1 Methyl 10 26 91 95:5 (100:0)
2 Benzyl 11c 2 90 92:8 (100:0)
3 Allyl 12 8 86 92:8 (100:0)
4 1,2:3,4-Di-O-isopropylidene-D-galactopyranosyl 13 5 82 84:16 (89:11)
5 1,2:5,6-Di-O-isopropylidene-D-glucofuranosyl 14 7 68 82:18 (91:9)
6 Cyclohexyl 15c 14 88 92:8 (100:0)
7 Phenyl 16 7 90 91:9 (96:4)
8 p-Methylphenyl 17 8 89 91:9 (93:7)
9 p-Methoxyphenyl 18 5 90 93:7 (100:0)

a Isolated yield after column chromatography.
b Anomeric ratios were obtained from 1H NMR spectra of the crude products; values in parantheses refer to the anomeric ratios of the products obtained after column

chromatography.
c Spectral data are consistent with the literature values (Refs. 16,21).
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